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Abstract
Issues of mismatch between databases remain a major challenge
in performing emotion recognition on target unlabeled corpus
from labeled source data. While studies have shown that by
means of aligning source and target data distribution to learn a
common feature space can mitigate these issues partially, they
neglect the effect of distortion in emotion semantics across dif-
ferent databases. This distortion is especially crucial when re-
gressing higher level emotion attribute such as valence. In this
work, we propose a maximum regression discrepancy (MRD)
network, which enforces cross corpus semantic consistency by
learning a common acoustic feature space that minimizes dis-
crepancy on those maximally-distorted samples through adver-
sarial training. We evaluate our framework on two large emo-
tion corpus, the USC IEMOCAP and the MSP-IMPROV, for
the task of cross corpus valence regression from speech. Our
MRD demonstrates a significant 10% and 5% improvement in
concordance correlation coefficients (CCC) compared to using
baseline source-only methods, and we also show that it outper-
forms two state-of-art domain adaptation techniques. Further
analysis reveals that our model is more effective in reducing se-
mantic distortion on low valence than high valence samples.
Index Terms: valence, domain adaptation, adversarial learning,
cross corpus, semantic consistency

1. Introduction
Deep learning algorithms, with its complex and non-linear
learning mechanism, have brought impressive advancement to
speech emotion recognition (SER) technology in recent years.
While being powerful, such a data-driven learning methodol-
ogy can suffer from generalizability due to the phenomenon
known as dataset bias or domain shift [1]. This issue of non-
robustness is especially evident when learning to perform cross
corpus emotion recognition. Corpus-dependent idiosyncratic
factors, such as gender distribution, languages used, recorded
environments, even interaction contexts, create a situation re-
sulting in a large mismatch between testing data (target domain)
and training data (source domain). Instead of painstakingly col-
lecting labeled data to train a predictor for each possible target
scenario, domain adaption methods have been proposed to com-
pensate for the degradation in SER performances when trans-
ferring the learned knowledge from labeled source domain to
unlabeled target domain [2, 3].

Conventional SER domain adaptation approaches are based
on aligning data distributions between target and source domain
[4, 5]. For example, Song et al. introduced the use of maximum
mean discrepancy (MMD) proposed by Borgwardt et al. in the
optimization procedure of non-negative matrix factorization to
address SER domain adaptation problem [6]. Other approaches
have pointed to the direction that by deliberately learning an

indifferentiable common feature space between source and tar-
get could mitigate domain-specific idiosyncratic factors when
performing source to target emotion recognition. For exam-
ple, Abdelwahab et al. used a gradient reversal layer in a three
databases scenarios to predict emotion attributes of arousal, va-
lence, and dominance [7] . Adversarial learning mechanism has
also been utilized in general domain adaptation. For example,
Tzeng et al. exploited GAN-based loss and untied weight shar-
ing to reduce the difference between the source and the target
[8], and Laradji et al. extended the idea by adding triplet loss
and metric learning to improve the state-of-the-art unsupervised
adaptation results for computer vision task [9].

The major drawback of these algorithms assumes that by
aligning target and source emotion data distribution, the learned
target feature representation can directly be used to transfer the
source emotion label to the correct target label. However, map-
ping the target and source data to an indifferentiable common
space does not enforce any emotion semantic consistency, i.e.,
source features of high valence data may be mapped to target
features of low valence data. The reason for semantic distor-
tion may be that the data distributions of the databases are com-
pletely different like the visualization presented in [7] Figure
7. In this work, our goal is to mitigate this particular issue of
emotional semantic distortion in cross corpus valence regres-
sion from speech. The idea is inspired from an image classifi-
cation work by Saito et al. [10]; they showed that the severity of
distortion can be estimated with quantified target discrepancy,
and by incorporating this discrepancy in the procedure of learn-
ing domain-indifferentiable feature space, it can improve the
overall recognition performance.

Specifically, in this work, we propose a maximum regres-
sion discrepancy (MRD) network to perform cross corpus va-
lence regression from speech. Our MRD enforces semantic
consistency when learning the common acoustic feature space
with adversarial discrepancy mechanism, i.e., minimizing the
maximum cross corpus discrepancy. We evaluate our frame-
work on two databases, i.e., the IEMOCAP [11] and the MSP-
IMPROV [12], to perform source to target valence regression.
Our methods obtains a relative gain of 10% and 5% in con-
cordance correlation coefficients (CCC) over using source-only
baseline. We compare MRD with two other domain adapta-
tion without consistency constraint, i.e., Deep Coral (correlation
alignment for deep domain adaptation) [13] and DANN (unsu-
pervised domain adaptation by backpropogation) [14]. MRD
demonstrates its superior emotion regression results over these
two methods. Finally, analysis shows that MRD reduces the
semantic distortion more on low valence samples than high va-
lence samples. The rest of the paper is organized as follows:
section 2 describes about database and our MRD network, sec-
tion 3 presents our the experimental setup and results, and fi-
nally section 4 concludes with future work.
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Figure 1: Adversarial training steps of our MRD. Step1 learns two diverse valence regressors on the source data. Step2 maximizes the
discrepancy by changing the regressors to detect those highly-distorted target representations. Step3 learns the encoder to minimize
the discrepancy through adjusting the projected common space to reduce emotional semantic distortion. After MRD training, we finally
regress the valence value of target domain sample as the average of the two regressors.

2. Database and Method
2.1. Emotion Databases

We use two different emotion databases in our sutdy, the
USC-IEMOCAP [11] and the MSP-IMPROV [12]. These
two databases are one of the most commonly-used English
databases in cross corpus emotion recognition research (e.g.,
[15, 16]). Both databases were collected in a similar setting,
i.e., simulated natural dyadic interactions between actors and
were labeled using similar schemes. We evaluate our valence
regression experiments in a cross corpus setting, i.e., using the
USC-IEMOCAP database as our source domain (training) data
with the MSP-IMPROV database as our target domain (testing)
data, and vice versa. Brief description of the databases is below.

2.1.1. The USC-IEMOCAP Corpus

The USC-IEMOCAP has about 12 hours of audiovisual data
recorded from ten actors grouped into five sessions. The record-
ings were collected using scripted and improvised settings,
which allowed the actors to express spontaneous emotional ex-
pressions driven by the context. The database was segmented
into utterances (a total 10039 utterances). Each utterance was
annotated with categorical emotion labels as well as dimen-
sional (valence and activation) attribute with score ranges from
[1,5] by at least two evaluators. The valence label used in this
work is the average of the values given by the annotators.

2.1.2. The MSP-IMPROV Corpus

The MSP-IMPROV has over 9 hours of audiovisual emotion
data. It consists of six dyadic sessions. In every session, two
actors improvise scenarios in which one of them would utter
pre-defined targeted sentences. For each of these targeted sen-
tences, four emotional scenarios were created to contextualize
the sentence to elicit happy, angry, sad and neutral. The MSP-
IMPROV corpus includes the target sentences, other sentences

during the improvisations, and the natural interactions between
actors during the breaks. Similarly, the MSP-IMPROV was
segmented into utterances (8386 utterances in total). Each ut-
terance was annotated with categorical emotion labels as well
as dimensional (valence and activation) attributes with score
ranges from [1,5] using a crowdsourced evaluation scheme [17].
The valence label used in this work is the average of the values
given by the annotators.

2.2. Acoustic Features

In this work, we use the IS10-paraling feature set that was used
in the INTERSPEECH Paralinguistic Challenge 2010 extracted
from the openSMILE toolkit [18]. This acoustic feature set con-
sists of spectral, prosody, energy and voicing-related low level
descriptors (LLDs) further processed by computing various sta-
tistical functionals (a total dimension of 1582); more detailed
description can be found in the previous work [19]. We also
separately z-normalize this feature set for each corpus .

2.3. Maximum Regression Discrepancy (MRD) Network

In this study, the main task is defined as a regression prob-
lem to estimate valence from speech in a cross corpus setting,
i.e., source to target regression. Figure 1 shows our entire re-
gression framework and illustrates the adversarial discrepancy
learning procedure. The MRD network is learned using labeled
data, denoted as {Xs, Ys}, from the source domain and unla-
beled data, denoted as {Xt, Yt}, from the target domain. We
train a feature encoder network E that maps inputs of xs and
xt onto a common space, and two different regressors R1 and
R2 are trained to predict the valence labels from E-encoded
feature output using labeled data. f1 (x) and f2 (x) is used to
denote the regressed output for input x obtained by R1 and R2,
respectively.

The key idea of our framework is based on adversarial dis-
crepancy learning, i.e., learning an encoder E that would min-
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Source : IEM Target : MSP Source : MSP Target : IEM

Source-Only Train-on-Target DANN Deep Coral MRD Source-Only Train-on-Target DANN Deep Coral MRD
PR 21.15 42.62 22.09 25.30 29.11 22.86 43.57 22.88 24.20 24.83
CCC 17.77 38.50 21.28 23.09 28.18 19.22 39.56 21.61 14.25 24.33

Table 1: Summary of our Experiment I. It lists both Pearson Correlation (PR) and Concordance Correlation (CCC) of the Source-only,
Train-on-Target, DANN, Deep Coral, and our MRD model. [IEM: USC-IEMOCAP corpus, MSP: MSP-IMPROV corpus]

imize the maximal semantic distortion between corpora. The
two regressors, R1 and R2, are learned from the labeled source
data and can predict source samples reliably; however the prob-
lem of domain shift will degrade the performance due to seman-
tic distortion. The discrepancy distortion can be estimated using
the inconsistency loss [20] obtained from the regressor output,
f1 (x) and f2 (x), defined below:

Ldis(Xt) =
1

K

K∑
k=1

|f1 (xtk)− f2 (xtk)| (1)

K denotes the number of batches. Note that R1 and R2 are
initialized differently, i.e., using different number of layers, to
obtain diverse regressors. We then train regressors to maximize
the inconsistency loss in order to identify those highly distorted
samples under a fixed E. This particular learning step is impor-
tant to detect those hidden distorted representations, otherwise,
the two regressors tend to converge to similar outputs. Then,
we finally optimize the MRD network to minimize the inconsis-
tency loss under the same regressors, which is equivalent to nar-
row the distance between the similar target samples and source
domain sample in the E encoded space to ensure the encoded
target feature preserve the least distorted emotion information.

After the learning of MRD converges, the regressed value,
rt, for a test sample, xt, is obtained using the following:

rt =
f1(xt) + f2(xt)

2
(2)

2.3.1. Adversarial Discrepancy Learning Procedure

The training of our cross corpus MRD network requires two
regressors and one encoder to carry out the iterative adversarial
discrepancy learning. We summarize the training procedure for
each epoch as three major steps below (Figure 1 right):

Step 1: Both regressors and encoder are trained on the labeled
source samples. The loss function used in this step is the
mean square error (MSE) loss defined below:

min
E,R1,R2

Lmse(Xs.Ys) (3)

Step 2: We update both regressors (R1, R2) and fixed the en-
coderE. The inverse discrepancy loss is used to increase
the discrepancy to detect distorted target samples. Addi-
tionally, the source’s regression loss is added to the ob-
jective function in this step. Step 2 is learned using the
objective function defined as below:

min
R1,R2

Lmse(Xs, Ys)− Ldis(Xt) (4)

Ldis = EXt∼xt [|f1 (xt)− f2 (xt)|] (5)

Step 3: We update the encoder, E, for m times to minimize
the discrepancy when fixing regressors. The objective
function is as follow:

min
E,R1,R2

Ldis(Xt) (6)

The hyperparameterm plays an important role in balanc-
ing the alternating min-max adversarial learning proce-
dure between encoder and regressors. Adversarial train-
ing is often unstable, strategy based on using different
learning rates [21] or applying different number of up-
dates on generator (our encoder) and discriminator (our
regressors) [22] have been used to stablize the training.
In this work, we update the encoder three times (m = 3)
in each epoch instead of just once. This parameter is
determined experimentally.

3. Experimental Setup and Results
We set up two different experiments in this work. Experiment
1 provides a comparison in the unsupervised domain adapted
soeech valence regression tasks between the MSP-IMPROV
and the IEMOCAP of the following models:

• Source-only: This is the baseline. The regressor net-
work is trained only on the source domain and regress
directly on target domain without any adaptation.

• Train-on-Target: This is the upper bound of the model.
The regressor network is trained on the target domain
and test on the target domain (no adaptation is needed)
in a speaker-independent cross-validation setting.

• DANN: This is an unsupervised domain adaptation
method through backpropagation based on method pro-
posed by Ganin et al. [14].

• Deep Coral: This is a method based on correlation
alignment for deep unsupervised domain adaptation pro-
posed by Sun et al. [13].

• MRD: Our proposed maximum regression discrepancy
network.

The parameters of the our MRD network are listed below:
the number of layers for encoder and two regressors are 4, 4,
and 5 respectively, and all hidden layer width is set to be 1024.
We use batch normalization, dropout rates (p=0.5), activation
function of SELU for all layers. The number of epochs and
learning rates are determined according to different tasks. In
this study, the maximum number of epochs is 100 and learning
rate is chosen between the range of 5e-4 to 5e-5.

The other comparison models are implemented using simi-
lar architectures to serve as a fair comparison. Each experiment
is repeated 10 times and the average of the results are reported in
this work. All results are evaluated in terms of Pearsons corre-
lation coefficient (PR) and concordance correlation coefficient
(CCC) between the ground-truth labels and the regressed val-
ues. CCC is defined as:

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)
2 (7)

Experiment 2 provides a visualization on the distribution
of the encoded space to analyze the generalization ability of
MRD and its effectiveness as a function of the valence score.
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MSP Session 5 ( Larger domain mismatch)
CCC 12.79 → 27.53

MSP Session 6 ( Smaller domain mismatch)
20.72→27.96

Low valence samples High valence samples Low valence samples High valence samples

Source only

MRD

IEM:   Low      High

MSP:   Low      High

Figure 2: Target domain: MSP-IMPROV and Source domain: IEMOCAP. We plot the 2D-projected acoustic representation in Source-
only and MRD encodeed space using t-SNE. It demonstrates a reduced semantic distortion, especially more effective on the low valence
samples.

3.1. Experiment 1 Results

Table 1 summarizes our Experiment 1 results. The Train-on-
Target can be seen as an upper bound of supervised regression
performances on both the IEMOCAP and the MSP-IMPROV; it
achieves 38.5% and 39.5% CCC on the two databases. Without
any domain adaptation, Source-only baseline achieves 17.7%
and 19.2% CCC, which indicates a severe domain mismatch
that degrades the regression performances significantly. DANN
improves 3.51% and 2.39% absolute over the baseline model
on the MSP-IMPROV and the IEMOCAP; Deep Coral method
shows an 5.32% improvement only when transferring from the
IEMOCAP to the MSP-IMPROV but not vice versa. Our pro-
posed MRD networks obtains an improvement of 10.4% and
5.01% absolute on the MSP-IMPROV and the IEMOCAP, re-
spectively.

MRD outperforms DANN and Deep Coral due to the fact
that these two other methods do not explicitly constrain the
learning of the encoder when aligning different databases dis-
tributions to maintain emotion semantic consistency. Without
such a consistency constraint, the encoder may generate inef-
fective acoustic representation because it only learns to make
the two distributions ambiguous and guiding the learning to pre-
dict well only in the source domain. Valence has been stated as
being a higher level affective attribute, which requires substan-
tial contextual and cognitive appraisal [23]. It can easily lead to
inconsistent semantic interpretation across domains even when
features are being projected to a similar acoustic space. Further-
more, we also observe that by using domain adaptation method
generally improves more when transferring from the IEMO-
CAP to the MSP-IMPROV, while further study is needed, we
hypothesize it may due to the amount of source data available,
i.e., the larger the variability exists in the database would often
lead to learning a more robust representation especially when
utilizing adversarial learning mechanism.

3.2. Experiment 2 Results

In Figure 2, we plot the 2D-projected acoustic representation
of the Source-only model and our MRD encoder out in task of
transferring from the IEMOCAP to the MSP-IMPROV using
t-SNE. We plot two sessions from the MSP-IMPROV. Session
5 corresponds to the subset of MSP-IMPROV that has a lower

regression performance when using Source-only model (larger
domain mismatch), and Session 6 corresponds the subset that
has a relatively higher regression performance prior to adaption
(smaller domain mismatch).

Generally, we observe that before MRD training, the en-
coded feature representations from these two sessions are all
very dissimilar between the two databases, and after the MRD
training, the differences in the two domains representation has
been decreased. By examining these t-SNE plots according to
low valence and high valence samples, it is evident that our
MRD help improve the low valence samples more than the high
valence samples. This indicates that the semantic distortion be-
ing correctly minimized in the encoded representation from our
MRD are more effective in the low valence samples. This could
potentially due to simply a larger amount of low valence sam-
ples available in the source domain, or it could be related to the
nature of acoustic manifestation of valence attributes, i.e., the
semantic consistent space for the acoustically low valence rep-
resentation may be easier to learn. However, additional investi-
gation is needed to understand the contributing factors of emo-
tional semantic distortion in the acoustic manifestations across
different domains of emotional expressions.

4. Conclusion and Future work
In this work, we present a maximum discrepancy regression
network (MRD) that learns to perform valence regression in
an unsupervised cross corpus setting. Using the target sam-
ple’s semantic discrepancy as feedback, our MRD adversarially
learns to transform the two databases acoustic representation
to a semantically-consistent and distributionally-aligned space.
This particular enforcement helps improve the valence regres-
sion performances. To our knowledge, MRD exceeds the cur-
rent state-of-the-art unsupervised adaptation results on regress-
ing valence attribute. In our immediate future work, we would
like to extend this framework to include lexical content, where
the semantic consistency between the corpus can be further con-
strained by the language used. It would be interesting to further
identify the underlying factors contributing to such a semantic
distortion between databases especially on challenging higher
level emotion attributes, such as valence, to enhance the robust-
ness of the current emotion sensing technology.
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